
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and 
Dissertations 

1-1-2002 

Mechanisms and protocols for intermediate processing at routers Mechanisms and protocols for intermediate processing at routers 

in the Internet in the Internet 

Sonal Pandey 
Iowa State University 

Follow this and additional works at: https://lib.dr.iastate.edu/rtd 

Recommended Citation Recommended Citation 
Pandey, Sonal, "Mechanisms and protocols for intermediate processing at routers in the Internet" (2002). 
Retrospective Theses and Dissertations. 20193. 
https://lib.dr.iastate.edu/rtd/20193 

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and 
Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses 
and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, 
please contact digirep@iastate.edu. 

http://lib.dr.iastate.edu/
http://lib.dr.iastate.edu/
https://lib.dr.iastate.edu/rtd
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F20193&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/20193?utm_source=lib.dr.iastate.edu%2Frtd%2F20193&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

Mechanisms and protocols for intermediate processing at routers in the Internet 

by 

Sonal Pandey 

A thesis submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

Major: Computer Engineering 

Program of Study Committee: 
Dr. Arun Somani, Co-major Professor 

Dr. Akhilesh Tyagi, Co-major Professor 
Dr. David Fernandez-Baca 

Iowa State University 

Ames, Iowa 

2002 

Copyright © Sonal Pandey, 2002. All rights reserved. 



www.manaraa.com

11 

Graduate College 
Iowa State University 

This is to certify that the master's thesis of 

Sonal Pandey 

has met the thesis requirements of Iowa State University 

Signatures have been redacted for privacy 



www.manaraa.com

Ill 

TABLE OF CONTENTS 

CHAPTER 1. OVERVIEW 1 

1.1 Introduction . . . . . . . 1 

1.2 Intermediate processing 2 

1.3 Active networks research . 3 

1.4 Thesis outline . . . . . . . 5 

CHAPTER 2. NETWORK MODEL AND DESIGN PRELIMINARIES . . 6 

2 .1 Terminology . . 

2.2 Network Model 

2.3 Intermediate Processing Protocol: an overview 

CHAPTER 3. ADDITIONAL TCP AND IP OPTIONS. 

3.1 IP options ...... . 

3.1.1 IPARR option 

3.1.2 IPAPR option 

3.2 TCP option ..... . 

6 

7 

8 

10 

10 

10 

12 

12 

CHAPTER 4. IPP LAYER MODULES AND DATA STRUCTURES 15 

4.1 Per-connection data structures 15 

4.2 Global modules at a router 

4.3 Connection identifiers 

4.4 Sub-sequence numbers 

4.5 Scripts . . . . . . . . . 

4.5.1 Execution of scripts at a router 

4.5.2 Support for multiple levels of computation . 

CHAPTER 5. HANDSHAKE AND CODE TRANSFER 

5.1 Connection set up ............. . 

16 

16 

17 

18 

18 

19 

20 

20 



www.manaraa.com

5.2 Router Reservation . 

5.3 Code transfer .... 

IV 

CHAPTER 6. PROCESSING AT THE IPP LAYER . .. 

6.1 Data transfer and processing 

6.2 Segmentation rules . . . . . . 

6.3 Router buffering and retransmissions . 

6.4 Connection Tear Down . . . . . . . . . 

CHAPTER 7. IPP CONTROL MECHANISMS 

7 .1 Flow control . . . . 

22 

24 

26 

26 

27 

28 

29 

31 

31 

7.2 Congestion control 31 

7.3 Security . . . . . . 31 

7.3.1 Router security 32 

7.3.2 Host security 32 

7.4 Fault recovery . . . . 33 

CHAPTER 8. IPP HEADER FORMAT AND MESSAGE TYPES . . . . . 35 

8.1 Header Format . . 35 

8.2 Types of messages 37 

CHAPTER 9. AN IMPLEMENTATION OF IPP ON LINUX . . . . . . . . 39 

9.1 Implementation of IPP on Linux 2.2.17 

9.2 Experimental set up 

9.3 Future work on IPP 

BIBLIOGRAPHY .... 

ACKNOWLEDGEMENTS 

39 

40 

41 

43 

45 



www.manaraa.com

Figure 2.1 

Figure 2.2 

Figure 4.1 

Figure 5.1 

Figure 5.2 

Figure 6.1 

Figure 8.1 

Figure 9.1 

Figure 9.2 

v 

LIST OF FIGURES 

Nodes configured as hosts and routers in a network 7 

Placement of IPP in the protocol stack . . . . . 9 

Modules and data structures in an active router . . . . . . . . . . . . . 15 

Connection Set up using the three-way handshake . 20 

Code transfer to the intermediate routers . . . . . . 24 

Processing at the routers 26 

TCP header format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 

Ethereal Network Analyzer tool . . . . . . . . 40 

Experimental set up for demonstration of IPP 41 



www.manaraa.com

1 

CHAPTER 1. OVERVIEW 

The Internet consists of a number of interconnected networks supporting communication 

among host computers using the Internet protocols. These protocols include the Internet 

Protocol (IP) [2], the Internet Control Message Protocol (I CMP), the Transmission Control 

Protocol (TCP) [3], and applications using them. IP is a datagram, or connectionless, internet-

work service and includes provision for addressing, type-of-service specification, fragmentation 

and reassembly of packets, and security information. In the Internet, reliable data delivery is 

provided in the Internet protocol suite by transport-level protocols such as the Transmission 

Control Protocol (TCP), which provides end-to-end retransmission, re-sequencing and connec-

tion control. Transport-level connectionless service is provided by the User Datagram Protocol 

(UDP). ICMP provides error reporting, flow control and first-hop gateway redirection. 

1.1 Introduction 

One of the most important constituents of the Internet is an IP router or a gateway [4]. 

A router scans the destination address of an IP datagram and then forwards the datagram to 

another router or to a directly connected host. 

In current practice, routers are normally realized by packet-switching software executing 

on them. Special-purpose hardware may also be used. A router is connected to two or more 

networks, appearing to each of these networks as a connected host. Thus, it has a physical 

interface and an IP address on each of the connected networks. Forwarding an IP datagram 

generally requires the router to choose the address of the next-hop router or (for the final hop) 

the destination host. This choice, called "routing", depends upon a routing data-base within 

the router. Thus the computation done on a datagram at a router is limited to scanning the 

IP header and updating header information (e.g. Time To Live). 

Lightly to moderately loaded routers use only a part of the CPU processing power. [8] 

shows the yearly CPU usage average for routers monitored for their CPU utilization with 



www.manaraa.com

2 

Multi Router Traffic Grapher [8] which is a tool to monitor traffic load on network links. The 

graphs indicate that CPU utilization may not be very high in many routers. Such routers 

could be used for performing more rigorous computation on the datagrams. It is also likely 

that certain routers remain heavily used for a certain period of time, but only incur low traffic 

at other points in time. It is also this kind of routers that could support computation on 

datagrams. 

1.2 Intermediate processing 

If the processing capability of a router is further enhanced to support computation on parts 

of data contained in a datagram, some of the end host computation can be delegated to the 

routers that the data passes through. The instructions about how to do the processing itself 

could be provided by the end hosts. 

This would be helpful for client-server kind of applications where the server delivers to the 

client some data based on the client's request. The server may send out an approximate set 

of data that could be pruned accordingly using the code supplied by the server. This pruning 

could be done at the routers. This helps alleviate computation load on the server. On the 

other hand, code could also be placed on the routers so that they assist the client receiving the 

data in performing some part of the computation on the data while it is en route to the client. 

This would help alleviate computation load on the client. Another application of intermediate 

processing could be in providing Quality of Service (QoS) information about connection data 

to the routers so that the data is treated in the way described by the accompanying code with 

the data. This approach can also be used in making available services to intermediate nodes 

that would otherwise be available only at the end hosts. More applications of intermediate 

processing are described in [13]. 

The ideas discussed in the previous sections fall into the paradigm of active networks 

[1]. Active Networks represent a new approach to network architecture that incorporates 

intermediate computation. These networks are active in a way that routers and switches 

within the network can perform computations on the application data flowing through them. 



www.manaraa.com

3 

Also, users can program the network, by supplying their own programs to perform these 

computations. 

1.3 Active networks research 

Active networking, where network nodes perform customized processing of packets, is a 

rapidly expanding field of research. The research work in laboratories around the world is 

being pursued with a positive outlook that active networking technology will mature to a 

point where it can be commercially deployed on a larger scale [10]. Active networks aim to 

constructively mutate the strong end-to-end semantics of the current transport mechanisms to 

realize the benefits of customized intermediate processing in a network. [11]. 

One of the earliest projects in this area of research started at Massachusetts Institute of 

Technology in 1996 [6]. The authors proposed an active network architecture in which passive 

packets are replaced with active capsules - encapsulated program fragments that arc cx<'cutcd 

at each switch they traverse. This approach allows application-specific processing to be injected 

into the network. The feasibility of computation and storage within the network provides a 

base that can be enhanced to build global applications, including those that invoke custornizcd 

multicast and merge processing. The work described an extension to the IP options mechanism 

that supports the embedding of program fragments in datagrams and the evaluation of these 

fragments as they traverse the Internet. 

A sequel to this architecture was the ANTS project [9], a toolkit for building and dy-

namically deploying network protocols. The approach is based on mobile code [14], demand 

loading, and caching techniques. The architecture of the system allows new protocols to be 

dynamically deployed at both routers and end systems, without the need for coordination and 

without unwanted interaction between co-existing protocols. 

NetScript, [7] developed at Columbia University is a programming language and envi-

ronment for building networked systems. Its programs are organized as mobile agents that 

are dispatched to remote systems and executed under local or remote control. The goal of 

NetScript is to simplify the development of networked systems and to enable their remote 



www.manaraa.com

4 

programming. The NetScript project aims at networks that allow for flexible programmability 

and dynamic deployment of software at all nodes. Application developers could develop code 

for both end-nodes and intermediate nodes and incorporate innovative features without having 

to wait for slow standardization processes. The NetScript language includes constructs and 

abstractions to simplify the design of traffic-handling software. 

The Composable Active Network Elements (CANEs)[12] project at Georgia Institute of 

Technology is a DARPA/ITO-funded effort investigating architectures and applications for 

active networking. The CANEs project seeks an approach to active networks that supports 

high performance while also permitting dynamic modification of network behavior to support 

specific applications or provide new services. The project comprises of an overall architecture 

for the active network; a specific user-network interface (the CANEs environment); and experi-

mental studies of the effectiveness of various active networks in support of specific applications 

and services. 

As part of the DARPA Active Nets program, BBN Technologies is developing a capability 

for packets to carry programs which are executed at each node the packet visits in the network. 

The programs implement additional diagnostic functionality in the network. To do this, BBN is 

developing a special language for programming Smart Packets [15] called Sprocket. A complete 

Sprocket program is to be encoded in either a single IPv4 or IPv6 datagram. The goal is 

to fit a program in an Ethernet-sized packet, which requires a very compact representation. 

Furthermore, the program would be authenticated before interpretation and run-time limited 

during execution. 

In the series of projects on developing programming languages for active networks is the 

PLAN project at University of Pennsylvania [16]. PLAN is a resource-bounded functional 

programming language that uses a form of remote procedure call to realize active network 

programmmg. 

This thesis defines a reliable transport layer protocol, Intermediate Processing Protocol 

(IPP), that comprises a set of rules and guidelines for processing in the Internet. The guiding 

factor in the design of IPP has been to adhere to the current well established IP routed network 



www.manaraa.com

5 

architecture while enhancing its ability to support active networking without replacing or 

making drastic changes to the Internet protocols currently used. This could lead to faster 

and easier deployment of intermediate processing since we are not replacing the current IP 

·routed set up but only enhancing it. The design is based upon the realization that it may 

not be practical to expect all the nodes of the Internet to become "active", hence the protocol 

definition should include provision for seamless integration with the "non-active" IP nodes. 

At the same time, there should be no restrictions on the "activeness" of the networks due to 

Ethernet frame size and/ or IP fragmentation. 

1.4 Thesis outline 

The outline of this thesis is as follows. Following the introductory material and literature 

survey in this chapter, active networks terminology and preliminary design concepts are pre-

sented in Chapter 2. Chapter 3 introduces the new TCP and IP options that have to be an 

integral part of IPP. The chapter describes the design of the options in detail. The design 

of IPP layer modules is discussed in detail in Chapter 4 which also introduces further con-

cepts and data structures suggested for implementation of IPP. Chapters 5 and 6 describe the 

working of IPP in terms of connection set up, code transfer and processing on data. Chapter 

7 deals with the control mechanisms and security issues that arise in case of deployment of 

IPP in active networking. Chapter 8 describes the IPP header format and summarizes the 

types of messages required for control and data transfer in IPP. Chapter 9 is a discussion 

about an experimental implementation of IPP on Redhat Linux kernel 2.2.17. The chapter 

also makes recommendations on the future work that could be pursued further in the field of 

active networking protocols and specifically the enhancement of IPP. 



www.manaraa.com

6 

CHAPTER 2. NETWORK MODEL AND DESIGN PRELIMINARIES 

2.1 Terminology 

• Active router: An IP router that supports IPP. In this document, the word router stands 

for an active router unless stated otherwise. 

• Active host: A host that supports IPP. In this document, the word host stands for an 

active host unless stated otherwise. 

• Sender based system: A pair of end hosts where the sender of the data is required to do 

certain computation on the data before sending it to the receiver end host. An example of 

this is searching a set of records on the basis of certain search parameters before sf'ncling 

the relevant records to a receiver. 

• Receiver based system: A pair of end hosts where the receiver of the data. is required to 

do certain computation on the data received from the other end host. An example of 

this is the decoding of MPEG files that a receiver end host receives from a sender end 

host. 

• Sender-receiver based system: A system that is both sender based and receiver based. 

• IP P segment: A TCP segment provided with additional information about intermediate 

processing. 

• Logical segments: The set of IPP segments containing the result obtained by performing 

one round of computation on the data at a router. These segments together depict 

the result of the computation and delivery of all of these is required for the receiver to 

comprehend the result. IPP segments that are logical segments carry the same sequence 

number in their headers. 



www.manaraa.com

7 

2.2 Network Model 

The model of network assumed for the work stated here is the IP routed packet switched 

model. The network consists of nodes some of which are configured as routers. Some or all of 

the nodes support IPP. Figure 2.1 depicts an example network. It is required that both the 

end hosts that wish to communicate using IPP support IPP, though it is not. necessary that 

all routers support IPP. The end hosts could have knowledge of the location of active routers 

in the network(s) between them. This is not a necessity, since the protocol allows for active 

routers to identity themselves on the fly to the end hosts during a connection request. 

Ro uter 3 

End Host B 

amt Active Router node 

~ non- IPP host or muter 

Figure 2.1 Nodes configured as hosts and routers in a network 

It is helpful to have the computation to be possible on parts of data so that the computation 

does not require all the data to be present at a router at the same time. The active routers 

must be able to defragment the IP fragments that they receive for an application requiring 



www.manaraa.com

8 

intermediate processing. The sequence of events describes the mechanism in terms of one end 

host sending and the other receiving. But the protocol is not limited to simplex data exchange 

nor does it require an end host to be exclusively a sender or a receiver. That an application is 

an active application is indicated by the well-known port numbers the host attaches itself to. 

If both the end hosts participating in a session wish to make use of intermediate processing, 

they should both attach themselves to ports that indicate so. 

The data is stored in a format such that the end hosts can recognize how much of data is 

required for one round of computation. By one round of computation it is meant that there 

is a periodicity in the way computation is done: the same computation is performed on parts 

of data. If there are multiple levels of computation required, the result of the previous level 

forms the input for the next level. 

2.3 Intermediate Processing Protocol: an overview 

This work presents an "active" reliable transport layer protocol, Intermediate Processing 

Protocol (IPP), that would facilitate processing of data on routers. This protocol is "active" in 

that routers within the network can perform computations on user data flowing through them 

and also users or network administrators can program the network, by supplying their own 

programs to perform these computations on the data they are exchanging with other end hosts. 

The trade-off between routing and processing at a router can be achieved based on the traffic 

statistics at the router. Routers that are not utilized to their full capacity for routing would be 

able to provide more processing time than ones that are highly utilized for routing purposes. 

An important goal of the protocol design is to place minimal additional complexity at a router 

so that normal routing performance does not suffer (or at least not significantly) because of 

any processing done at the router. The IPP is based on Transmission Control Protocol (TCP) 

and relies on the same underlying concepts as used in TCP. Additional information is carried 

in TCP segments to indicate that the data for the connection requires intermediate processing. 

Modifications to retransmission policy, window updates policy, congestion and flow control are 

needed to make TCP better fit the active networking paradigm. 



www.manaraa.com

9 

The IPP is intended to provide host-to-host connectivity to machines wishing to commu-

nicate. At the same time, the IPP is intended to provide point-to-point connectivity between 

routers. The IPP is a reliable transport layer protocol allowing the end hosts to view a connec-

tion as an end-to-end connection and also letting intermediate nodes (routers) to view the same 

connection as a point to point (router-to-router) connection. The protocol definition includes 

provisions for connection set up handshaking, router reservation, intermediate processing of 

data, acknowledgment of data received, retransmission of lost data, flow control, congestion 

control, ordered delivery of data and security issues. Since it is not practical to require that all 

the nodes of the Internet are able to support active networking, the protocol described in this 

work ensures seamless integration of active nodes with the non-active ones in the Internet. 

The location of IPP in the 7-layer model is as shown in figure 2.2. The IPP forms the layer 

above the IP layer. 

Send() Rccv (l 

Applicati011 Layer 

Presentation Layer 

Session Layer 

!PP I TCP I UDP layer 

IP Layer 

Dala Link Laye1 

Physical Layer 

Network 

Figure 2.2 Placement of IPP in the protocol stack 

The IPP layer does not function like a full-fledged transport layer and that is important to 

minimize the processing overhead incurred at an active router. The IPP layer at a router or 

an end host does not maintain state information about a connection, In that way, IPP serves 

more like an addition to the IP layer than an independent transport layer on its own. The 



www.manaraa.com

10 

design goal is to support processing at an intermediate node while limiting the memory and 

computation overhead to an acceptable maximum. 



www.manaraa.com

11 

CHAPTER 3. ADDITIONAL TCP AND IP OPTIONS 

3.1 IP options 

The IP layer is associated with routing of datagrams flowing through the router. There are 

modifications needed at the IP layer to support intermediate processing. Instead of directly 

forwarding the data that needs intermediate processing, the IP layer passes it to the IPP 

layer with additional information about the type of handling data requires in that case. The 

following IP options must be implemented at the IP layer of active routers and active hosts: 

1. IP Active Record Route (IPARR) 

2. IP Active Process Route (IPAPR) 

3.1.1 IPARR option 

The IPARR option is used to reserve active routers in a session between two end hosts at 

the time of connection set up. Any active routers along the route that the connection request 

traverses can indicate their capability and willingness to support intermediate processing for 

the session. They can do so by placing their IP addresses in the list of router addresses 

contained in the option data part of the option. The IPARR option is an IP level option and 

would be carried in the IP header part of the connection request. The IPARR option would 

be set at the end host requiring intermediate processing from active routers. The format of 

the IP option is as follows: 

1. Type field contains IPARR 

2. Length field contains the length of the IP option 

3. Option data field contains the sub-fields: 

• Levels of processing required 



www.manaraa.com

12 

• List of active routers 

• Nature of Request 

The type field of the IP option field contains IPARR identifying that it is the IP Active Record 

Route option. The length field of the IP option specifies t.he length of the options including 

the type and length fields. 

Levels of processing implies that the data needs to be operated upon by so many different 

scripts in a certain order. This also implies that the end host requires so many active routers 

to commit processing. One router may commit to more than one level of processing. It may 

be acceptable to have fewer routers commit processing than required. This case may be taken 

care of by the end hosts depending on whether the system is a sender based system or a receiver 

based system i.e. an end host may decide to do some part of the computation itself. 

The list of active routers contains the 32 bit IP addresses of the routers the connection 

set up request must pass through. Depending on whether a certain router is willing to do 

processing or not, the routers may place their IP addresses in the list. It will also be depend 

on how many more levels of processing are required to complete the computation. If there are 

no more routers needed to do the computation, the subsequent routers must not place their IP 

addresses into the list irrespective of whether they can commit processing or not. In case the 

sender host does have the knowledge of the location of active routers in the network, it could 

send out a list of router IP addresses. The active routers that the connection request passes 

through may decide to commit processing. If a router cannot commit processing, but its IP 

address is listed in this list, it must remove its IP address from the list. If a router commits 

to more than 1 levels of processing, it should place its IP address in the IPARR address list 

that many times. So, the length of the IP address list is the same as the number of levels of 

processing required. 

Nature of Request indicates whether the option is for requesting reservation or replying to 

a reservation request. 

The list of routers contains only the active routers on the route. The actual route may 

include non-active routers, but they are not reserved. All that is required is that the same set 



www.manaraa.com

13 

of active routers be traversed by the data in the order of router reservations. 

3.1.2 IPAPR option 

The IPAPR option is used to indicate to the routers and the end hosts that data carried 

in the datagram· needs intermediate processing. When a router receives a datagram with this 

option set, it defragments the datagram if needed, and then passes it up to the IPP layer. 

The IPAPR option is an IP level option and is carried in the IP header part of the datagram. 

The IPAPR option would be set at the end host requiring intermediate processing from active 

routers. The format of the IP option is as follows: 

1. Type field contains IPAPR 

2. Length field contains the length of the IP option 

3. Option data field contains the list of active routers that need to do the processing. 

The IPAPR option if set, would specify to the active router that the data contained in the 

corresponding datagram needs to be processed. For this purpose, the router should defragment 

the datagram and pass the segment to the IPP layer. The type field of the IP option field 

contains IPAPR identifying that it is the IP Active Process Route option. The length field of 

the IP option specifies the length of the options including the type and length fields. From the 

order in which its IP address appears in the list of routers, a router can determine what level 

of processing it has to do on the data. 

The options IPARR and IPAPR should be copied during fragmentation. This is because 

the active router would withhold the fragments and defragment them, if required, for passing 

the segment up to the IPP layer. 

3.2 TCP option 

The IPP protocol requires that a new option, TCP Intermediate Processing (TIP) be 

implemented at the active routers and the end hosts. This option is used to convey information 

about code and data corresponding to the connection. The format of the option is as follows: 



www.manaraa.com

14 

1. Type field contains TIP 

2. Length field contains the length of the options including the type and length fields 

3. Options data field contains the following sub-fields depending on the scenario it is being 

used in: 

• C, Script ID: Here C stands for code. This sub-type indicates that the information 

contained in this options data part has to be used in the context of code associated 

with the connection. The Script ID is a unique identifier associated with the script 

for the connection. The script ID itself should be an indicator of the level of pro-

cessing the script can be used to do. Suppose a script is to be used for 3rd level of 

processing in a connection. Then its script ID should be 3. After connection set up, 

code should be transferred to the routers and the receiver host. The segments that 

carry code must have the TIP option set with C flag set and Script ID information 

placed. 

• D, Script ID, Sub-sequence number: Here D stands for code. This sub-type indicates 

that the information contained in this options data part has to be used in the 

context of data associated with the connection. The Script ID is a unique identifier 

associated with the script for the connection. The script ID itself should be an 

indicator of the level of processing the script can be used to do. Suppose a script is 

to be used for the 3rd level of processing in a connection. Then its script ID should 

be 3. It is possible that the result of a computation at the router spans across 

multiple segments. In this case, these segments are logically related in that all of 

them put together will form the complete result. So, it is necessary to be able to 

order these segments at the receiver. Sub-sequence number is the offset of the data 

contained in the segments that are logically related. 

• A, Sub-sequence number: Here A stands for ACK. this option is referred to as TACK 

option in further discussion in this document. This option is set when the receiver 

receives an out of order segment. The receiver acknowledges the last successfully 



www.manaraa.com

15 

received byte in the sequence number field of the header and sub-sequence number 

of the segment in this option data field. The sub-sequence number information con-

tained in the option data is relevant only to the router used just before the receiver 

node. This point is discussed in greater detail in the chapter on retransmissions. 

• F, Sub-sequence number: Here F stands for finish. This sub-type indicates that 

all levels of processing have been completed on the segment identified by Sequence 

number, Sub-sequence number tuple and the data just needs to be delivered to the 

application without further processing. 



www.manaraa.com

16 

CHAPTER 4. IPP LAYER MODULES AND DATA STRUCTURES 

The IPP layer structure can be broken up into per-connection and global entities (shown 

in figure 4.1). Per-connection entities are used to keep information related to an open IPP 

connection whereas global entities are needed for the overall working of the IPP. 

I Scripts I 
~ non-active segments 

--

data for connection #I I _ CJ 

I CJ "' @ 

~ data for c01mec11on #21- g_ 
lnput segments "' ~ ~ CJI ~ - DCJ CJ 

CJD r ~ 

~ c. 
" Output Queue 

\ data for cm:nection #n I _ 
if 

Input Queues 

Figure 4.1 Modules and data structures in an active router 

4.1 Per-connection data structures 

A router uses a unique connection identifier to differentiate among vanous open active 

connections. In addition, an active router maintains the following data structures per open 

active connection: 

• Input queue: The First In First Out input queue stores all the data for a connection yet 

to be processed. When the connection queue is scheduled for processing, data is removed 

from the queue. The amount of data removed from the queue is based on the amount 

of data required to complete one round of processing. This follows from the assumption 



www.manaraa.com

17 

that the data is sent in such a form that there are demarcations between parts of data 

that are not used in the same round of computation. 

• Reservation timer: The reservation timer is used to keep the processing reservation at 

the router. When the reservation timer for a connection goes off, the data structures for 

the connection are freed by the router. 

• Processing timer: The processing timer is used to provide an upper limit to the time 

that the router can allot per round of computation for a connection. When this timer 

goes off, the router halts processing activity for the connection and sends a Processing 

Timeout Error message to the sender of the data. 

4.2 Global modules at a router 

• Packet classifier: This modules classifies the incoming IPP segments according to their 

corresponding connection and places them into their corresponding input buffers. Con-

nection identifiers are used to classify the segments. 

• Round robin processing scheduler: The round robin processing scheduler schedules con-

nections for processing of their segments in a round robin manner. There is an upper 

bound to the time it takes before a connection is scheduled and that is in the form of 

the timers provided for a connection. 

• Script store: The script store stores the scripts for the connections differentiated based 

on their connection identifiers. 

• Output Queue: The processed IPP segments for all the connections are sent out to an 

output queue where they are dispatched to the IP layer. 

• Interpreter: An interpreter is required at the IPP layer that can decipher the scripts and 

execute them. 



www.manaraa.com

18 

4.3 Connection identifiers 

A connection identifier is a combination of the f<;>llowing parameters: 

1. The IP addresses of the end hosts participating in the communication. 

2. The port numbers of the end hosts participating in the communication. 

3. The direction of flow of data that needs to be processed at a router. 

Connection identifier should also depict the direction in which the data is flowing. This is 

required to be able to distinguish between scripts that are to be used for upstream and down-

stream communication of data. It is possible that both the end hosts require intermediate 

processing. In this case, script identifiers will become ambiguous if the direction of flow of 

data is not maintained. The reservations on the routers are linked with the direction of the 

data flow too. If two hosts A and B are communicating, and both need intermediate processing 

for the data they are exchanging, they may have two different sets of routers for each direction. 

In case reservation cannot be made in one of the directions, the associated host may decide to 

do the computation itself. By associated host it is meant the host that is responsible for the 

computation. 

4.4 Sub-sequence numbers 

The data that comes to a router for processing is carried in segments that are numbered by 

the sequence number of the first byte of data they contain. When the data undergoes processing 

at a router, it is possible that the size of the result is different from the size of the input data. 

So, the sequence numbers that originally counted the data bytes are not useful anymore. But 

the original sequence numbers are required so that the receiver can acknowledge the sender 

of the data bytes it has received. Thus we need a means of assigning sequence numbers to 

the resulting data at a router while retaining the original sequence numbers. Consider the 

following example: 

Example: 



www.manaraa.com

19 

Suppose there is one router reserved between the sender and receiver end hosts. This router 

receives data bytes with sequence numbers 35 to 452 from the sender at some point of time. 

This data may have reached the router encapsulated in one segment or in multiple segments. 

The router may require byte numbered 35 to byte number 257 for completing one round of 

computation on the data. Suppose the result of this computation is of size 100 bytes. Suppose 

the router allocates 2 new segments for this resulting data and fills 35 in the sequence number 

field of the TCP (IPP) headers of both of the segments. These two segments, which cannot be 

differentiated by means of their sequence numbers are called logical segments. 

Suppose the first 59 bytes of the result were filled in one segment and the remaining 41 

in the other. Now, the router assigns a sub-sequence number of 1 to the first segment and a 

sub-sequence number of END to the other. Generalising, the last segment in a set of logical 

segments will have the sequence number END. The sub-sequence numbers are really the 

offsets of the resulting bytes except that assigned to the last segment. The receiver will now 

wait to acknowledge original sequence number up to 257 to the sender until it receives all the 

logical segments corresponding to that sequence number correctly. The receiver will receive 

two segments with the same sequence number, but different sub-sequence numbers. The length 

fields of the segments when added, give the total size, i.e. 100, of the data received. The length 

of original data field gives the actual data bytes to be acknowledged. 

Summarizing, the sub-sequence numbers are used: 

• by any up-stream routers to order the logical segments which may then be processed. 

• by the receiver so that it receives the complete results corresponding to a set of original 

bytes sent by the sender. 

4.5 Scripts 

The motivation is to use router processing capacity rather than router intelligence to do 

intermediate processing customized to the application requirements. The end hosts provide 

instructions to the router in the form of a program that is downloaded at a router after 

connection set up. The scripts could be generated at the time when the application at the end 



www.manaraa.com

20 

host is being generated too. In that way, the application will have a set of scripts associated 

with it and when the application is run, scripts would be transferred to routers as per the 

protocol guidelines. 

4.5.1 Execution of scripts at a router 

The routers themselves would have a run-time environment at the kernel level that would 

support running of the scripts supplied by the end host. The script executables should be 

in a format supported by the active routers. The protocol does not place as limit on what 

programming languages should be used to supply scripts to the router, but it is necessary for 

the routers and the end hosts to agree upon an execution environment that the end hosts can 

supply scripts for. 

4.5.2 Support for multiple levels of computation 

An end host may require multiple levels of processing on certain data and multiple routers 

may commit processing at different levels. For example, if an end host needed to prune a set 

of records on the basis of two search parameters, one way is to look for records which satisfy 

both the search parameters at the same time. Another way is to break up the computation 

into two levels, by searching the records for one parameter first and then searching the results 

of the first search to look for records satisfying the second parameter also. These two levels of 

computation can be delegated to the routers and scripts provided to do the respective levels of 

computation. A router has the knowledge of whether there is a next level of computation that 

has to be performed on the results it is forwarding to the next hop node. The router knows 

this from the list of routers it receives in the form of IPAPR option. So, once it is done with 

the processing of the data, the new segments that are generated should have the new next level 

of script identifier, or F flag set in the TIP option if all processing is over on the data. 



www.manaraa.com

21 

CHAPTER 5. HANDSHAKE AND CODE TRANSFER 

5.1 Connection set up 

When two IPP enabled hosts wish to communicate they need to establish a connection 

between them. Either of the hosts may initiate the connection or both the hosts may initiate 

the connection at the same time (shown in figure 5.1). During the connection set up, they need 

to reserve a set of IPP enabled routers if they require intermediate processing to be done on 

the data. For this purpose, the protocol requires that routers willing and capable of supporting 

intermediate processing inform the end hosts. One of the end hosts will actively pursue the 

Initiating end host Intermediate Router Acceptinf e11d host 

Figure 5.1 Connection Set up using the three-way handshake 



www.manaraa.com

22 

connection set up and the other will wait passively for connection requests. The connection 

set up is depicted in the following sequence of steps: 

1. An end host application waits at a well-known port for connection requests from other 

hosts wishing to communicate. The port number to which the end hosts attach them-

selves to should be indicative of whether the system is sender based or receiver based or 

both. 

2. The end host receives a connection request (SYN) from a client. 

3. If the connection is acceptable to the passively waiting end host, it replies with a corre-

sponding SYN and ACK. This SYN+ ACK segment also has the IP ARR IP option set if 

the acknowledging end host needs intermediate processing to be done on the data. This 

tells the intermediate active routers that this particular connection needs to make use of 

processing services. 

4. The initiating end host receives the acknowledgment and sends an ACK in return and 

enters the ESTABLISHED state. When the accepting end host receives the ACK, it 

enters the ESTABLISHED state. 

5. When a router receives an IP datagram containing an IPARR option, it assumes that a 

connection would be set up. Based on the source and destination IP addresses and port 

numbers, it generates a connection identifier and initializes some data structures for the 

connection. This connection identifier must also take into account the direction in which 

the data would be flowing. If both the end hosts would require intermediate processing, 

two separate connection identifiers must be generated to prevent ambiguity. At the same 

time, the routers that commited processing start off their reservation timers. 

6. A participating IPP router collects information about sequence numbers to be used in 

the connection by copying the initial sequence number from the sequence number field 

of the SYN segment. This SYN segment is passed to the IPP layer since IPARR option 

is set in the IP options field. 



www.manaraa.com

23 

7. At the time SYN is received, there is no existing connection information, hence the IPP 

layer checks if it is possible to accept a new connection. If it is not possible for the router 

to accept the router reservation request, the request is ignored. If the router is ready 

to support intermediate processing for this connection, the initial sequence number from 

the sequence number field is noted. This would help the router order segments for the 

connection. When the connection accepting end host receives this SYN segment, it sends 

a SYN and ACK and also the acceptable Maximum Segment Size (MSS). 

8. An end host receiving an IPARR (request) message copies the list of IP addresses in 

IPARR (reply) message in the next outgoing segment sent to the requesting end host. 

9. Both the accepting host and the initiating host are in ESTABLISHED state. 

Any routers not supporting IPP are not reserved and any router hop may be taken to 

go from one reserved router to the next reserved router. The protocol only requires that the 

reserved routers be always traversed and in the same order. Each ACK sent out by a receiver 

passes through the intermediate routers in the opposite order that they were traversed up 

to the receiver. This ACK is really the ACK segment with the TIP TACK option set. It 

carries information about the original sequence number acknowledged, sub-sequence numbers 

acknowledged and window updates. The acknowledgments carry IPARR or IPAPR option 

based on the connection state and these options identify the active segments to the active 

routers. The ACK traverses the route to the sender end host passing through the same set 

of routers as listed in the IPARR option field of the ACK. When the ACK for the SYN is 

returned along this route, the router would also note the MSS value for the next router. The 

router that is immediately preceding the receiver end host receives this ACK and notes the 

MSS value for the receiver. It then overwrites the MSS value in the ACK segment with its 

own MSS value. 



www.manaraa.com

24 

5.2 Router Reservation 

A router may monitor the CPU usage over a period of time and decide whether it is capable 

of supporting any intermediate processing requested by active applications. It also needs to 

decide how many of such connections it can support at one time so that the performance in 

terms of time taken for the computation is reasonably good. A router commits itself to a 

connection by placing its IP address in the list of routers that the IPAPRR option carries with 

it. The reservation at a router is really the reservation of its CPU cycles and memory that can 

be used for active processing. 

The reservation is a forward reservation. The reservation is a soft state reservation in 

that the requesting end host must keep refreshing the reservation at the router by sending 

out Reservation Refresh messages to the router. The reservation at a router remains till 

it keeps receiving Reservation Refresh messages from the corresponding end host. The sender 

may send reservation refresh messages to refresh the soft state reservation at the routers. These 

reservation refresh messages travel all the way to the receiver that acknowledges the message. 

Reservation timeout may happen at a router before it receives such a refresh message. In that 

case, the router deletes the reservation state without informing the end hosts. The next time 

the sender tries to send data along the route that it assumes is still reserved, the first active 

router on the way sends it an error message indicating that there is no connection. Based on 

this, the sender may decide to re-establish the connection. 

Because non-existent reservations are detected at the first active router along the way, the 

protocol avoids a possible flurry of error messages from all the routers along the way. This was a 

possibility if the data were allowed to travel further down the network. Periodic transmission of 

refresh messages by hosts and routers is expected to handle the occasional loss of a Reservation 

Refresh message. If the effective cleanup timeout is set to K times the refresh timeout period, 

then a router can tolerate K-1 successive Reservation Refresh message losses without falsely 

deleting state. The network traffic control mechanism could be statically configured to grant 

some minimal bandwidth for Reservation Refresh messages to protect them from congestion 

losses. 



www.manaraa.com

25 

When data arrives at an intermediate router, it checks the sequence number and then 

the corresponding sub-sequence numbers. The sequence number of the incoming segment is 

checked against the current largest sequence number available at the router for that connection. 

Duplicated segments or missing segments can be detected by sequence number check. If an 

out of order segment is detected, a NACK is sent to the previous router. This NACK is just 

a duplicate ACK addressed to the previous router and with the option TIP TACK set along 

with the sequence number and sub-sequence number set to that of the last received segment. 

5.3 Code transfer 

If it is a sender based system, the sender needs to transfer the required scripts to the 

routers. Then the sender can send the unprocessed data which is intercepted by the routers 

and sent to the receiver. If it is a receiver based system, the receiver needs to transfer the 

required scripts to the routers. The sender will send the data and the routers will perform the 

computation that the receiver should have performed on the data upon receiving it. Figure 

5.2 depicts the steps involved in the transfer of code. 

In the following points in this section, an end host refers to the sender or the receiver based 

on the type of the system. 

1. The end host IPP forms code segments with IPAPR option set and also TIP option set 

to Code. 

2. The router IP layer passes the defragmented segment to the IPP layer. The IPP layer 

processes the TIP Code option by downloading the script if the level of the script matches 

the level of processing the router committed to. 

3. The code segments reach the other end host which then acknowledges the receipt of 

segments. The acknowledgement of the receipt of code informs the sender of the code 

that the code has been correctly received at the routers and the receiver. 



www.manaraa.com

26 

router I downloads level I code 

Code segment for level l of processinu 
b 

Code segment for level 2 of processing router 2 downloads level II code 

host A router I router 2 host B 

Figure 5.2 Code transfer to the intermediate routers 



www.manaraa.com

27 

CHAPTER 6. PROCESSING AT THE IPP LAYER 

6.1 Data transfer and processing 

The reserved routers perform computation on the connection data based on the scripts sup-

plied by the applications. Figure 6.1 depicts the steps involved in data transfer and processing. 

packets r r 
seq# x+y seq# x 

I r I ~I 

8p:~_e:s~n_g_l:v_e~ ~ - - - - - - - - - - - - - - - -
,.-

- - - - - - - ---- ---- - - - - - -
-------~ 

sub seq# z+t+w sub seq# z+t 

I I I i 
sub seq# z 

I I,.-
) Processing level 2 

sub seq# a+j 
sub seq# a r-1 I I 

~ 

ACK (x+y+r) 

I 

Sender Router I Router 2 Receiver 

Figure 6.1 Processing at the routers 

1. The IP layer of a node supporting IPP receives a datagram with IP APR option set. The 

IPP layers checks this and passes the IPP segment to the IPP layer, after defragmenta-

tion, if needed. 

2. The segment classifier at the IPP layer places the incoming IPP segment in the input 



www.manaraa.com

28 

queue corresponding to the connection. 

3. The round robin scheduler schedules the connections in a round robin manner. A router 

may allocate a certain amount of CPU time to be distributed among all the open active 

connections passing through it. The round robin scheduler may schedule the processing 

according to the time allocated to each connection. 

4. At this time, the processing timer for the connection is started. 

5. The router CPU performs the computation on the data and packs the resulting data 

into segments. It is possible that the size of the resulting segment is very small. In that 

case, the router may decide to club results from multiple rounds of computation for one 

connection into one segment. 

6. If the processing is complete before the processing timer goes off, the processing timer 

is stopped. Else, if the processing timer goes off, the router halts processing for the 

connection and sends an error message to the sender of data. 

7. The resulting segments are placed on the transmission queue where non-active packets 

are also placed in the order they arrive. 

8. These packets are scheduled to be dispatched to the IP layer as it would be done in the 

normal case. 

9. During any of the above steps if the reservation timer goes off, the processing for that 

connection is halted, the information about the connection is deleted and the data for 

that connection is discarded. 

6.2 Segmentation rules 

An IPP segment is used to carry both code and data for a connection. Option data carried 

m the TCP (IPP) and IP headers are used by a router to differentiate between code and 

data. The router also comes to know from the options as to what script has to be run on a 

particular piece of data. There are certain constraints to how the data and code have to be 



www.manaraa.com

29 

arranged in a segment and limits to the information that header options are allowed to carry 

in a segment. These rules have been framed in order to let the routers unambiguously decide 

what computation has to be done on data and whether data or code is carried in a segment. 

• Scripts for different levels of processing must be sent in separate segments so that Code, 

Script ID part of TIP option unambiguously indicates the level of script carried in it. 

• Unprocessed data and processed data must be sent in separate segments. This is to avoid 

ambiguity that will arise due to some part of the segment requiring a certain script to 

be run on it and the other part of the segment being already processed. 

• Parts of data requiring different scripts to be run on them must be sent in separate 

segments. 

• Code and data must be sent in separate segments. 

• Data that has been processed fully may be clubbed with other fully processed data for 

the connection. This implies that a router in the chain of processing routers may place 

results from consecutive rounds of computation in the same segment. 

• The data should be in such a form that the end hosts and the routers can identify how 

much data is required to complete one round of computation. For example, if the data 

is in the form of records, there could be demarcations between records so that the end 

hosts and the routers are able to identify the boundaries of the records. 

6.3 Router buffering and retransmissions 

The computation done on data may result in the size of data that is different from the 

input data. If there is any part of the result lost on the way to the receiver, it will trigger 

retransmission of the data from the sender. The retransmitted data would have to undergo 

the processing at various routers again and this may lead to delay. There is also no guarantee 

that this time the results will reach the receiver in their entirety. So, it would be helpful to 



www.manaraa.com

30 

have the routers buffer the results for a pre-determined amount of time in case retransmissions 

are required. 

In this system consisting of active hosts and routers, the acknowledgment process is bro-

ken down into various segments. For an active host or router, the immediate predecessor is 

responsible for data buffering and retransmission, if required. In this case, there is only local 

acknowledgement of data: between successive active hosts and routers. The acknowledgement 

consists· of sequence number and the sub-sequence numbers of the bytes of data acknowledged. 

Ml receives an ACK before its retransmission timer goes off. Retransmission timer at Ml 

runs out before an ACK is, if at all, received. In the first case, Ml removes the acknowledged 

sequence numbered data from its retransmission queue and updates its count of acknowledged 

sequence numbers for the connection. In the second case, Ml retransmits the data to M2 and 

starts its retransmission timer. Between M2 and M3 similar process of local acknowledgment 

and buffering takes place. M2 deletes the data from its retransmission queue once it receives 

a local acknowledgment from M3. M2 starts its retransmission timer when it sends out the 

data for M3. In case of data loss between M2 and M3, the data is furnished by M2 from its 

retransmission queue. By use of local acknowledgement, we avoid the overhead of buffering 

data at each of the routers until an acknowledgment from the receiver end host is received. 

This approach involving local acknowledgments also provides the latest form of processed data 

unlike a retransmission of unprocessed data by the sender end host. 

Receipt of an acknowledgment would influence variables such as receivers window, conges-

tion window, data buffered for retransmission and retransmission timer status. 

If a router encounters lost data (out of order segment), it sends a NACK to the previous 

router in the chain requesting retransmission. This lost data segment is identified by means 

of (sequence number, sub-sequence number) tuple. Sub-sequence number can be used to point 

out a segment from a set of logical segments which in turn is identified by means of an original 

sequence number. When all the logical segments reach the end host successfully, it sends an 

ACK to the previous IPP router. Any data for retransmission is thus made available by the 

previous IPP node in the chain as opposed to by an end host. 



www.manaraa.com

31 

6.4 Connection Tear Down 

There are two cases: 

1. Sender based system 

(a) Sender initiated CLOSE In this case, by initiating the FIN, the sender indicates 

that it has no more data to send. In the meanwhile, the sender needs to keep the 

reservation at the routers alive until it receives acknowledgment of all the data that 

it wanted the receiver to receive. For this, the sender continues to send Reservation 

Refresh messages periodically until it receives the ACKs for all the bytes transmit-

ted. So, even though the application does not have data to send, the IPP must keep 

the reservation alive by sending Reservation Refresh messages. 

(b) Receiver initiated CLOSE In this case, the receiver does a CLOSE as it would 

happen normally. The receiver does not have any reservation at the routers. 

2. Receiver based system 

(a) Receiver initiated CLOSE In this case, the receiver indicates that it docs not have 

any data to send and closes the connection normally. 

(b) Sender initiated CLOSE In this case, by initiating the FIN, the sender indicates 

that it has no more data to send. When the receiver receives this FIN, it needs to 

tear down the reservation it has on the routers. The receiver keeps refreshing the 

reservation at the routers unless it receives the byte sequence numbers till the FIN 

segment sequence number. So, even though the sender application does not have 

data to send, the receiver IPP must keep the reservation alive by sending Refresh 

messages. 

At the time of connection tear down, the end hosts need not inform the routers that the 

reservations are no longer needed as the routers can delete the reservation information when 

the Reservation Timer for the connection expires. 



www.manaraa.com

32 

CHAPTER 7. IPP CONTROL MECHANISMS 

7 .1 Flow control 

Flow control is done by taking into account the receiver window of the next active node 

in the c.onnection. This is done by attaching a window update in the acknowledgment option 

field. The previous router stores this value of window update for the next router and it is used 

at the time of next transmission to the router for that connection. At the time of transmission, 

a router or an end host takes into account the receiver window size of the next active router (or 

host) and its own congestion window. This flow control is local between pairs of active nodes 

(hosts and routers). The issue of flow control is being dealt with at each IPP router rather 

than by the end hosts alone. An IPP router could decide its receiver window size to report 

based on the amount of incoming data that is being taken up for processing and dispatching 

to the next IPP node. 

7 .2 Congestion control 

Each of the intermediate routers has information about the next router's receiver window 

and its own value of congestion window based on the network state. So it has to output the 

data to the next router (the data is possibly going via many normal routers to reach this next 

active router) with respect to these two parameters. The size of the data remains constant 

between any two successive active routers and router-host pair. The minimum of receiver 

window and congestion window governs the amount of data that can be sent. The congestion 

window size is decided based on the congestion control algorithm that is being deployed at the 

moment [5]. 



www.manaraa.com

33 

7.3 Security 

There are two parts to the security mechanism that is needed when intermediate routing 

is employed: 

1. Security mechanism at the routers participating in the processing. 

2. Security mechanism at the end hosts participating in the processing. 

7.3.1 Router security 

Intermediate processing involves downloading a piece of code by the routers and executing 

it on the data supplied by the host. This can pose security threats for a router in may ways. 

So there has to be a mechanism at the routers so that any abnormal use of router resources is 

identified and curbed. 

1. The code supplied by an end host may try to consume an unlimited amount of router 

resources, e.g. processing time, router memory etc. leading to a possible resource star-

vation to other applications. 

2. The code supplied may try to change the routing information for other connections at 

the router. 

3. An end host may reserve the router for processing and never send any data. 

The first problem can be taken care of by placing an upper limit to the router resources that 

can be made available to active applications. Processing timer ensures that no application 

engages a router CPU in indefinitely long computation. An upper limit to the size of input 

queue for a connection ensures that no application can occupy indefinitely large memory space 

at a router. The second problem can be addressed by restricting the memory access by the 

code to only the pre-allocated area of router memory. The processing should be aborted if 

the code tries to access any part of user or kernel memory outside its allocated space. The 

router reservation is a soft state reservation which means that the reservation is torn down 



www.manaraa.com

34 

after a finite amount of time in case it is not renewed by the host that originally requested the 

reservation. 

7.3.2 Host security 

To make use of intermediate processing on a byte stream of data, the end hosts make 

sure that all packets pass through the same set of routers and in the same order of traversal 

of routers. Making all data pass through the routers can pose a security threat because the 

routers can possibly put together all of data and actually make sense out of it. This is less of 

a possibility in the normal IP routing where the route between is decided packet per packet. 

1. The router may try to use scripts supplied by an end host for a connection for another 

connection. 

2. The router may try to modify the scripts to its advantage. 

The data could be encoded in such a form that only the scripts for that connection would be 

able to decipher it. This may prevent usage of scripts for other than the connection ownin~ 

them in a way that the scripts may not be able to decipher data encoded for other coHncctions. 

Scripts would normally be executables that are ideally impossible to reverse-engineer. This is 

so that a malicious router does not modify the script to use it to its advantage. 

7.4 Fault recovery 

A network is susceptible to node and link failures that disrupt the connections passing 

through those nodes. To ensure reliable transfer of data between the end hosts, fault recovery 

mechanisms are required. There has to be a provision for retransmission of data that might 

have been lost due to network failures. Since the routers are also modifying the data, and the 

receiver receives data different from what the sender sent out, there is scope for loss of data 

without the knowledge of the end hosts if one of the nodes along the route crashes. The effect 

of the case when one of the reserved routers fails is different from the case when one of the end 

hosts fails and recovery mechanism has to be different accordingly. 



www.manaraa.com

35 

1. End host failure: If one of the end host IPP crashes and loses all the memory of sequence 

numbers it has been using, the connection would have to be re-established. RFC 793 

states that to be sure that a TCP (hence IPP here) does not create a segment that carries 

a sequence number which may be duplicated by an old segment number remaining in 

the network, the TCP (IPP) must keep quiet for a Maximum Segment Lifetime (MSL) 

before assigning any sequence numbers upon starting up or recovering from a crash in 

which memory of the sequence numbers in use was lost. If a TCP (IPP) is reinitialized 

in some sense, yet retains its memory of sequence numbers in use, then it need not wait 

at all; it must only be sure to use sequence numbers larger than those recently used. 

2. Router failure: In this case, the end hosts have the knowledge of what sequence numbers 

have been acknowledged and where they should pick up from in the next incarnation of 

the connection. The connection needs to be re-established because there is a possibil-

ity that the router that crashed may not recover. So, the end hosts must reroute the 

connection through other routers. It is possible that the same router may be a part of 

the next connection also. In this type of failure, both the end hosts have the memory 

of the sequence numbers in use before a router crashed. To be sure that a TCP (IPP) 

does not create a segment that carries a sequence number which may be duplicated by 

an old segment remaining in the network, the end hosts must make sure to use sequence 

numbers larger than those recently used. 



www.manaraa.com

36 

CHAPTER 8. IPP HEADER FORMAT AND MESSAGE TYPES 

8.1 Header Format 

The IPP protocol is based on TCP and uses the same header format. The inherent concepts 

as used in TCP remain intact as additional information for intermediate processing is forward 

to the routers and end hosts using TCP segments. Introduction of new TCP and IP options 

provides a vehicle to carry code and data information to the routers. 

32 bits 

0 2 3 

Source Port Destination Port 

Sequence Number 

Acknowldegment Number 

u A p R s F 
Data Reserved R c s s y I Window 
Offset G K H T N N 

Checksum Urgent Pointer 

Options Padding 

Data 

Figure 8.1 TCP header format 

• Source Port: (16 bits) The source port number. 

• Destination Port: (16 bits) The destination port number. 



www.manaraa.com

37 

• Sequence Number: (32 bits) The sequence number of the first data octet in this segment 

(except when SYN is present). If SYN is present the sequence number is the initial 

sequence number (ISN) and the first data octet is ISN + l. 

• Acknowledgment Number: (32 bits) If the ACK control bit is set this field contains the 

value of the next sequence number the sender of the segment is expecting to receive. 

Once a connection is established this is always sent. 

• Data Offset: ( 4 bits) The number of 32 bit words in the TCP Header. This indicates 

where the data begins. The TCP header (even one including options) is an integral 

number of 32 bits long. 

• Reserved: (6 bits) Reserved for future use. Must be zero. 

• Control Bits: ( 6 bits, from left to right): 

URG: Urgent Pointer field significant ACK: Acknowledgment field significant PSH: Push 

Function RST: Reset the connection SYN: Synchronize sequence numbers FIN: No more 

data from sender 

• Window: (16 bits) The number of data octets beginning with the one indicated in the 

acknowledgment field which the sender of this segment is willing to accept. 

• Checksum: (16 bits) The checksum field is the 16 bit one's complement of the one's 

complement sum of all 16 bit words in the header and text. If a segment contains an odd 

number of header and text octets to be checksummed, the last octet is padded on the right 

with zeros to form a 16 bit word for checksum purposes. The pad is not transmitted as 

part of the segment. While computing the checksum, the checksum field itself is replaced 

with zeros. The checksum also covers a 96 bit pseudo header conceptually prefixed 

to the TCP header. This pseudo header contains the Source Address, the Destination 

Address, the Protocol, and TCP length. This gives the TCP protection against misrouted 

segments. This information is carried in the Internet Protocol and is transferred across 

the TCP /Network interface in the arguments or results of calls by the TCP on the IP. 



www.manaraa.com

38 

• Urgent Pointer: (16 bits) This field communicates the current value of the urgent pointer 

as a positive offset from the sequence number in this segment. The urgent pointer points 

to the sequence number of the octet following the urgent data. This field is only be 

interpreted in segments with the URG control bit set. 

• Options: (variable) Options may occupy space at the end of the TCP header and are a 

multiple of 8 bits in length. All options are included in the checksum. An option may 

begin on any octet boundary. There are two cases for the format of an option: 

Case 1: A single octet of option-kind. 

Case 2: An octet of option-kind, an octet of option-length, and the actual option-data 

octets. 

The option-length counts the two octets of option-kind and option-length as well as the 

option-data octets. 

8.2 Types of messages 

Other than the normal TCP control messages, the protocol requires the following additional 

messages: 

1. Reservation Request messages: in the form ofIPARR messages. This option is set in the 

SYN+ ACK or ACK segment at the time of connection set up and hence does not require 

separate message to carry this information. Out of the two end hosts, the end host 

requiring intermediate processing has to send out these messages with IPARR (request) 

option set. 

2. Reservation Reply Messages: An end host receiving a segment containing the IPARR 

option (request) set would need to reply to the message by setting the IPARR (reply) 

option of the next outgoing segment. These messages confirm whether the reservation of 

router(s) requested by the other end host were successful or not. The host sending out 

IP ARR (reply) message copies the list of IP addresses (possibly empty) from the IP ARR 

(request) message into the list of IP addresses field of IPARR (reply) message. 



www.manaraa.com

39 

3. Reservation Refresh messages: to maintain the soft state reservation at the routers. Out 

of the two end hosts, the end host requiring intermediate processing has to send out these 

messages. These messages are sent with zero data and IPAPR option set. That indicates 

to the routers and the receiver that it is a reservation refresh message and carries no data 

to process. The receiver acknowledges the receipt of the message. 

4. Non-existent Reservation Error Messages: that will be generated by a router when it 

receives a segment with IPAPR option set but the connection information for that seg-

ment does not exist. This error message has to be sent to the end host that is responsible 

for the computation and not necessarily to the sender of the segment. The end host on 

receipt of this error message may decide to reserve routers for the computation. The end 

host, may take one of the following actions: 

• If this end host had done an active opening of the connection (like connect()), it 

may try to reconnect. 

• If this end host had passively accepted the connection (like accept()), it may reset 

the connection (send a RESET to the other end host) and wait for new connec-

tion requests. An end host should ignore any error messages for a non-existent 

connection. 

5. Processing Error messages: will be generated at a router and would be sent to the sender 

of the data on which processing failed. These error messages carry the starting sequence 

number of the data on which processing failed. The sender of data checks the sequence 

number to avoid processing of any error messages generated in a previous incarnation of 

the connection. 

6. Duplicate acknowledgment option messages: are sent by an IPP node when it receives an 

out of order segment. These messages are like the TCP duplicate ACK messages, except 

that here the TIP option TACK is also set which lets the previous node know that it a 

a retransmission request message. 



www.manaraa.com

40 

CHAPTER 9. AN IMPLEMENTATION OF IPP ON LINUX 

9.1 Implementation of IPP on Linux 2.2.17 

An experimental implementation of IPP was done on Redhat Linux 2.2.17. The goal 

of the implementation was to demonstrate the working of IPP highlighting the concepts of 

connection set up, router reservation, the working of TIP, IPARR and IPAPR options, data 

transfer, intermediate processing and reliable communication. The following features of IPP 

were demonstrated by means of implementation: 

1. IP options IP ARR (IP Record Route) and IP APR (IP Process Route) 

2. TCP option TIP (TCP Intermediate Processing) 

3. Mechanism for router reservation as a part of TCP connection set up handshake proce-

dure. 

4. Mechanism for code transfer as a part of TCP connection set up handshake procedure. 

5. Mechanism to maintain active connection information at active routers and end hosts. 

This information includes routing information, scripts and buffer data structures. 

6. Mechanism for generating new TCP (here IPP) segments at an active routers after com-

putation has been done on original data. This accomodates expansion/ contraction in 

the size of original data as a result of processing. This required sending out additional 

information with the data to help the end host in ordering the result segments. 

7. Mechanism at active hosts for acknowledging the original number of bytes sent out by the 

originating host irrespective of how many result bytes it received from an active router. 

This required changes to the way TCP handles sequence numbering of data. 

8. Network packet analyzer tool "tcpdump" and "Ethereal Network Analyzer" were used 

to check the correctness of the implementation. 



www.manaraa.com

41 

file ;_dit .s;_apture Qisplay Iools .tfelp 

No .• Time Source estination Protocol Info 

2 0.050539 rie111ann.ee.washin9ton libra.ee.iastate.edu TCP 
3 0.051268 I ibra.ee. iastate.edu riemann.ee.washin9ton TCP 
4 0.052240 libra.ee. iastate.edu riemann.ee.washington TCP 
5 0.102030 rie111am.ee.washin9ton libra.ee.iastate.edu TCP 
6 10,060963 1 ibra.ee. iastate,edu riemann.ee.washington TCP 
7 10.061020 libra.ee. iastate,edu riemann.ee.washington IP 
8 10.061065 libra.ee. iastate.edu riemann.ee.washington IP 
9 10.061119 libra.ee.iastate.edu riemann,ee.washington IP 

459 > 4556 [SYN, ACl<J Seq=611793454 flck=11167229! 
4556 > 459 CflCKl Seg=1116722961 Ack=611793455 Wit 
4556 > 459 [] Seq=1116722961 lkk=611793455 Win=3: 
459 > 4556 [flCKl Seq--611793455 Ack=1116722982 Wit 
4556 > 459 [ J Seq=1116722982 Ack=611793455 lolin=O 
Fragmented IP protocol (proto=TCP Ox06, off=1440: 
Fragmented IP protocol (proto=TCP Ox06, off=2880: 
Fragmented IP protocol (proto=TCP Ox06, off=4320: 
Fragmented IP protocol (proto=TCP Ox06, off=5760: 
Fragmented IP protocol (proto=TCP Ox06, off=7200: 

10 10.061164 1 ibra.ee. iastate.edu riemann.ee.washington IP 
11 10.061209 I ibra.ee. iastate.edu rie111ann.ee.washington IP 
12 10.061254 libra.ee. iastate.edu riemann.ee.washington IP 
13 10.126688 riemann.ee.washington libra.ee.iastate.edu TCP 
14 10,126982 riemam.ee.washington libra.ee. iastate.edu TCP 
15 10.127202 riemam.ee.washington libra.ee.iastate.edu TCP 
1t:; 1() 1?771!=! lihrA i::i.i::io iA~t.=iti::i. .::.rl11 rli=om.=inn .::011=o 1.1.=i"hinntnn TIP 

Fragmented IP protocol (proto=TCP Ox06, off=8640: 
459 > 4556 CACKl Seq=611793455 Ack=1116722999 Wit 
459 > 4556 CPSH, ACKJ Seq=611793455 Ack=11167229~ 
459 > 4556 [FIN, AO(] Seq=611793481 Ack=11167229~ 
.i~~i; '> 4~q rork'l ~...,=111J;7??qqq Ork=i;117q'4~1 IJ;, I 

r±l Frame 1 (82 on wire, 82 captured) 
r±l Ethernet I I 
r±l Internet Protocol, Src Addr: libra.ee.iastate.edu (12:3.186.205.95), Dst Addr; riemann.ee.washington.edu (128.95.30.17) 
B Transmission Control Protocol, Src Port: 4556 (4556), Dst Port: 459 (459), Seq: 1116722960, Ack: 0 

Source port: 4556 <4556) 
Destination port: 459 (459) 
Sequence number: 1116722960 
! I. - .J_.. 1 •.• -"'·.. ...tt'i L.. •'- ... 

~-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~/ 

I 

_J 
ro-oc-10~0-0_0_5_d_c_l_d_b_3_f_c_0_0_1_0~5d---1'~3-d9~4f~08~00~47~00~-.-•• -.-•• -.-.-z-.-.O-.-.G-.~~~~~~~~~~~~~~~8 
0010 00 44 00 33 40 00 3f 06 4b f7 81 ba cd 5f 80 5f .D.3@.?. K •••• _._ 
00?0 1 ~ 11 00 00 00 00 00 00 00 00 11 r.r. 01 r.h 4? Rf ... R . I 
Filter:j _j Resetll File: <capture> Drops: o 

Figure 9-1 Ethereal Network Analyzer tool 

9.2 Experimental set up 

For a demonstration of correct and consistent functioning of the protocol, a set up of 4 

Linux machines was used as shown in figure 9.2. The University of Washington machine, 

shown as Machine 1 acts as a remote server for the two client machines, Machine 2 and 4 

respectively located at Iowa State University. Machine 4 acts as a router for the two machines. 

All these machines have IPP enabled on them. The set up was used to dempnstratc the flow of 

request and replies between the server and the clients based on IPP rules. The clients request 

connections from the server at which time the server acknowledges and sends out the code 

first to be used at the router. Once the connection set up is done, data coming from the 

server passes through the Internet and Machine 2 to the clients. Machine 2 performs certain 



www.manaraa.com

42 

Machine I D 

filterqueen-GEl-1.cac. washington.edu 

INTERNET 

routerS.iastate.edu 

Figure 9.2 Experimental set up for demonstration of IPP 

computation on the data before forwarding them to the clients. 

There were two scenarios that were tested: 

• Server availability: Due to an IPP server sending out unprocessed data to be processed 

at the routers, it is expected that this increases the server availability. The parameter 

for server availability that was used was the time it takes for a server to process a certain 

number of requests with and without the use of IPP. 

• Client latency: Due to code transfer overhead and additional checks at the routers per-

forming the computation, it is expected that a client would have to wait longer for getting 

the results. This latency incurred should be within acceptable bounds. The measure of 

this latency was the total time it took for a client to send a request to a server and get 

the results back. 



www.manaraa.com

43 

9.3 Future work on IPP 

Work in the following areas could be pursued: 

1. This work presents and implements the reservation of routers statically, i,e, at the time 

of connection set up. Dynamic reservation in which a router could decide to process data 

passing through it on a per segment basis rather than a whole connection basis could be 

a more flexible approach. 

2. As with other mobile code systems, a system deploying IPP is prone to security attacks. 

Recommendations have been made in the thesis about some security measures, and more 

rigorous security measures would make an IPP system more robust. 

3. Parallelization of intermediate computation and routing decision at a router would not 

only speed up processing time, but also allow a router to continue its routing function in 

times of heavy traffic. 

4. Reliable communication could be made a configurable option rather than a part of the 

protocol design so that an application could choose between fast but unreliable commu-

nication and slightly slow but reliable communication. 

5. More concise scripting languages tailored to be used for IPP would help make the size of 

code segments smaller and would take up less memory at the intermediate nodes. 



www.manaraa.com

44 

BIBLIOGRAPHY 

[1] Active Networks. http://www.sds.lcs.mit.edu/activeware, date accessed: March 26, 2002. 

[2] J. Postel. Internet Protocol, RFC 791, Information Sciences Institute, University of South-

ern California, Marina del Rey, California, September 1981. 

[3] J. Postel. Transmission Control Protocol, RFC 793, Information Sciences Institute, Uni-

versity of Southern California, Marina del Rey, California, September 1981. 

[4] J. Baker. Requirements for IP version 4 Routers, RFC 1812, Cisco Systems, Santa Barbara, 

California, June 1995. 

[5] M. Allman, V. Paxon, W. Stevens. TCP Congestion Control, RFC 2581, Tucson, Arizona, 

April 1999. 

[6] Dave Wetherall and David Tennenhouse. Active IP option, Proceedings of the 7th ACM 

SIGOPS European Workshop, Connemara, Ireland, September 1996 

[7] S. da Silva, D. Florissi and Y. Yemini. Composing Active Services in NetScript, ARPA 

Active Networks Workshop, Tucson, Arizona, March 9-10, 1998. 

[8] Multi Router Traffic Grapher, http://mrtg.hdl.com/mrtg.html, date accessed: March 26, 

2002. 

[9] David J. Wetherall, John Guttag, and David L. Tennenhouse. ANTS: A Toolkit for Build-

ing and Dynamically Deploying Network Protocols, IEEE OPENARCH'98, San Francisco, 

California, April 1998. 

[10] David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie, David J. Wetherall, and 

Gary J. Minden.A Survey of Active Network Research, IEEE Communications Magazine, 

Vol. 35, No. 1, pp 80-86. January 1997. 



www.manaraa.com

45 

[11] S. Bhattacharjee, K. Calvert and E. Zegura. Active Networking and End-to-End Argu-

ments, IEEE Network Magazine, 1998. 

[12] K. Calvert, E. Zegura, J. Sterbenz. CANEs: A Modest Approach to Active Networking, 

Presented at IEEE Computer Communications Workshop, Phoenix, Arizona, September 

1997. 

[13] Ulana Legedza, David J. Wetherall, and John Guttag. Improving The Performance of 

Distributed Applications Using Active Networks, IEEE INFOCOM, IEEE, March 1998. 

[14] Mobile Code, Agents and Java. http://www. infosys. tuwien. ac. at/Research/ Agents, date 

accessed: March 26, 2002. 

[15] Beverly Schwartz, Alden W. Jackson, W. Timothy Strayer, Wenyi Zhou, Dennis Rockwell 

and Craig Partridge. Smart Packets for Active Networks, Presented at Openarch, New 

York, NY, March 1999. 

[16] Micheal Hicks, Pankaj Kakkar, Jonathan T. Moore, Carl A. Gunter and Scott Nettles. 

Proceedings of the Third A CM SIG PLAN International Conference on Functional Program-

ming Languages, pp 86-93, 1998. 



www.manaraa.com

46 

ACKNOWLEDGEMENTS 

I would like to take this opportunity to express my thanks to those who helped me with 

various aspects of conducting research and the writing of this thesis. First and foremost, 

I thank Dr. Arun Somani for his guidance, patience and support throughout this research 

and the writing of this thesis. His insights and words of encouragement have inspired me and 

renewed my hopes for completing my graduate work. I would also like to thank him for helping 

me pursue graduate work in the area of research that I was most interested in. In this regard, 

I highly appreciate his support. 

I would also like to thank my committee members for their efforts and contributions to this 

work: Dr. Akhilesh Tyagi and Dr. David Fernandez-baca. I would additionally like to thank 

Dr. Akhilesh Tyagi for providing me an initial insight into my thesis project. 

I also take the opportunity to thanks the members of DCNL whose helpful inputs gave me 

a deeper understanding of the various aspects of my research work. 

Last but not the least, I sincerely acknowledge the motivation and help provided by my 

friend Sharad without whose constant support I might not have been able to complete my 

graduate education. I am also thankful to my family in India for their continuing moral 

support. 


	Mechanisms and protocols for intermediate processing at routers in the Internet
	Recommended Citation

	Mechanisms and protocols for intermediate processing at routers in the Internet

